- Level 1: Grade 4, 5
- Question 1
- Question 2
- Question 3
- Level 2: Grade 6
- Question 4
- Question 5
- Level 3: Grade 7, 8
- Question 6
- Question 7
- Level 4: Grade 9, 10
- Question 8
Level 1
: Grade 4, 5
Question 1
‣
Expected Outcome:
Same expected outcome as the normal link. See below
Question 1
Expected Output
Question 2
‣
Question 2
#-----------------------------------------------------------------------#
# Q: Draw 4 circles that touch each other and fill up the entire canvas #
#-----------------------------------------------------------------------#
circle(200, 200, 1)
Expected Output
Question 3
‣
Expected Outcome:
Same expected outcome as the normal link. See below
Question 3
#-------------------------------#
# Q: Make the answer equal to 3 #
#-------------------------------#
answer = 56 - 7 - 1 - 4
Change the - sign to +, -, / or * and, if needed, insert brackets to make the result of the equation equal to 3
Expected Output
Level 2
: Grade 6
Question 4
‣
Expected Outcome:
Same expected outcome as the normal link. See below
Question 4
#---------------------------------------------------------------#
# Q: Edit the code so that the average works in both dimensions #
#---------------------------------------------------------------#
Expected Output

Question 5
‣
Question 5
#-------------------------------------------------------------#
# Q: Find and Display the Perimeter & Area of the shape drawn #
#-------------------------------------------------------------#
Expected Output

Level 3
: Grade 7, 8
Question 6
‣
Question 6
#--------------------------------------------#
# Q: Reflect the circle along the black line #
#--------------------------------------------#
Expected Output

Question 7
‣
Question 7
#--------------------------------------#
# Q: Find the Area of the white region #
#--------------------------------------#
Both Triangles are EQUILATERAL.
Area should be correctly calculated even as the triangles overlap
Expected Output

Level 4
: Grade 9, 10
Question 8
‣
Question 8
#-----------------------------------------------------------------------#
# Q: Find the equation of y in terms of x, passing through all 3 points #
#-----------------------------------------------------------------------#
a = 0
b = 0
c = 0
y = a*x*x + b*x + c
Find the values of a, b, c for which (x1, y1), (x2, y2) and (x3, y3) all lie on the quadratic equation ax² + bx + c e
Expected Output
